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(Foreword

Mechanical design has many aspects; teaching it has many more.

The recognition of a need for a design, the translation of that need into a question,
translating the question into a mechanical specification and to come up with one or more
ideas that could offer a solution to a problem. It is an extensive struggle with an often
unclear list of requirements that must be met. Also available space and money often
play a very prominent role. The physical laws play their part and often put a damper on
the celebrations.

When educating designers, it is important to teach them how to find all the boundary
conditions of the design and to minimise their impact without underestimating them and
to take them into account in the designs. Although making design mistakes is the most
functional learning experience, it is often possible to learn by studying the mistakes of
others.

As alecturer at Fontys University of Applied Sciences, Susan van den Berg discovered
that striving for good didactics is very important. With this book, she makes a successful
attempt to present a collection of the important principles in mechanical engineering, in
an accessible manner. It encourages the reader to think about chosen design principles
and offers a guide to assess and qualify a mechanical design. The book invites you to
think for yourself and take a step to explore and understand the complex work field of a
mechanical engineer. It gives simple experiments that provide insights into a number of
important physical effects and proposes to apply relevant strategies.

Piet van Rens, May 2020








